Y=-16t^2+14t+32

Simple and best practice solution for Y=-16t^2+14t+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=-16t^2+14t+32 equation:



=-16Y^2+14Y+32
We move all terms to the left:
-(-16Y^2+14Y+32)=0
We get rid of parentheses
16Y^2-14Y-32=0
a = 16; b = -14; c = -32;
Δ = b2-4ac
Δ = -142-4·16·(-32)
Δ = 2244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2244}=\sqrt{4*561}=\sqrt{4}*\sqrt{561}=2\sqrt{561}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{561}}{2*16}=\frac{14-2\sqrt{561}}{32} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{561}}{2*16}=\frac{14+2\sqrt{561}}{32} $

See similar equations:

| t6+1^3=t3-12 | | 6x+x+7=-9 | | 3,2x-6,24=4 | | 6x+2=692/3x+3) | | n+5^3+n9=31^9 | | x^2+6x-23=-4x+1 | | 2n-17=-7 | | |5-6x|+6=11 | | -4(2w-4)=24 | | 125^1/x⋅10=0.5 | | 9(k+3)=36 | | 2y+1=16 | | 25=5(-1+3m) | | 125^1/x/10=0.5 | | 2(r+6)=22 | | x-31=20.6 | | 5x+x-18+90=180 | | 3v-15=5 | | 1/2(360-2x)=80 | | 2/3x5/3x=26 | | 14-2w=w+23 | | 3x-2(x-5)=2(x-3)-8 | | 3=3a-6 | | -4(x)=48 | | 1/2t+8=5/2-10 | | (3x+4)+3x-16=180 | | 2(r+4)-8=10 | | 3a^2=-10a-3 | | 6/10x=100 | | 5x-18=36-x | | 3(z+-4)=-6 | | 8=3+r |

Equations solver categories